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Course Description. In mathematics, examples are analogous to phenomena

in physics. They are integral to the historical progression of mathematical

thought, driving the development of profound concepts and methodologies.

Many significant theorems in modern mathematics emerge from the study and

analysis of basic examples. This course aims to elucidate abstract mathemat-

ical concepts by presenting intriguing examples, thereby fostering motivation

and intuition among students.
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1. Overview of the course

Example 1.1. Let x ∈ (0, 1)\Q be an irrational number. It can be uniquely

expressed as a continued fraction

x =
1

a1 + 1
a2+ 1

a3+
1
···

where a1, a2, . . . are positive integers.

How frequently does a positive integer k appear in such an expression?

It turns out that for any given k, the occurrence frequency of k in the continued

fraction representation of x is the same for almost every x ∈ (0, 1)\Q, and is

given by the following formula

lim
n→∞

#{i | ai = k, 1 ≤ i ≤ n}
n

=
1

log 2
log

(
(k + 1)2

k(k + 2)

)
.

To establish this result, we will introduce some fundamental concepts from

measure theory and ergodic theory.

Example 1.2. Consider the following necklace-splitting problem. Two thieves

have stolen a precious necklace (which is open, with two ends), adorned with

d types of stones (such as diamonds, sapphires, rubies, etc.), with an even

number of each type. Lacking knowledge of the values of the stones, the

thieves aim to divide the stones of each type evenly using the fewest possible

cuts. The question arises: what is the minimum number of cuts required to

achieve this goal?

It is straightforward to demonstrate that at least d cuts are necessary: ar-

range the stones of each type successively, requiring one cut for each type. The

necklace theorem establishes that d cuts are always sufficient. Remarkably, all

known proofs of this theorem are topological in nature.

Example 1.3. Let C ⊆ R2 be a simple closed curve. One considers the following

Rectangular Peg Problems.

• Is it always possible to find four points on C such that they form the

vertices of a rectangle?

• A significantly more challenging question: Given a fixed rectangle R,

is it always possible to find four points on C such that they form the

vertices of a rectangle similar to R?
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The first question was affirmatively answered by Vaughan in 1981, employing

basic topological techniques. The second question was also recently resolved

in the affirmative by Greene and Lobb [9]; however, their proof relies on more

advanced tools from symplectic geometry, which fall beyond the scope of this
course.

Example 1.4. For which positive integers n can we express n as the sum of two

squares, i.e., n = x2 + y2?

To tackle this question, it is intuitive to introduce the ring of Gaussian

integers Z[i], given the factorization x2 + y2 = (x+ iy)(x− iy). Consequently,

the question is reduced to investigating the properties of the ring Z[i].

Example 1.5. A more refined question to consider is: how many ways can a

positive integer n be expressed as the sum of two (or more) squares?

This problem is intricately connected to the theta function, defined for a

complex variable τ ∈ H on the upper half plane:

θ(τ) =
∞∑

n=−∞

e2πin2τ =
∞∑

n=−∞

qn
2

, where q = exp(2πiτ).

Let r2(n) denote the number of ways n can be expressed as the sum of two
squares:

r2(n) = #{(x, y) ∈ Z2 | x2 + y2 = n}.
It can be observed that

θ(τ)2 =
∞∑
n=0

r2(n)qn.

Thus, the problem reduces to understanding θ(τ)2.

Remarkably, θ(τ)2 is a modular form of weight 1 for the congruence subgroup

Γ1(4) ⊆ SL(2,Z). Utilizing the theory of modular forms allows us to derive an

explicit formula for r2(n). Moreover, this approach extends to finding explicit

formulas for r2k(n), representing the sum of 2k square numbers for any positive

integer k, using modular forms.

Example 1.6. Is the rope depicted in the following figure knotted? Inspired by

such questions, we will delve into various knot invariants and their categorifi-

cations, exploring the information they encapsulate. The process of categori-

fication entails concepts such as cobordism categories and topological quantum

field theory, which are of significant independent interest.
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Example 1.7. In 1696, Johann Bernoulli posed the brachistochrone problem

(from ancient Greek, meaning ”shortest time”) as a challenge to the mathe-

maticians of his era: Given two points A and B in a plane, where B is lower

but not directly below A, what is the curve traced out by a point acted upon

solely by gravity, which starts from A and reaches B in the shortest time?

This problem is widely recognized as the seminal problem of the calculus of

variations, which investigates methods for finding the curve or surface mini-

mizing a given integral. We will explore the approaches developed by Euler (in

1736) and Lagrange (in 1755) for addressing general problems of this nature.

Example 1.8. Let P = (p1, . . . , pn) : Cn → Cn be a polynomial function, where

each coordinate p1, . . . , pn is a polynomial in Cn. Independently proven by

Grothendieck (1966) and Ax (1968), it was established that if P is injective,

then it is bijective. This theorem can, in fact, be generalized to any algebraic

variety over an algebraically closed field.

The method of proof is particularly noteworthy: it demonstrates the con-

cept that finitely many algebraic relations in fields of characteristic 0 can be

translated into algebraic relations over finite fields with large characteristics.

Consequently, one can utilize the arithmetic of finite fields to prove a state-

ment about C, despite there being no homomorphism from any finite field to

C. This serves as an exemplary illustration of the application of techniques

from model theory in mathematical logic.

Example 1.9. Let a and m be integers that are relatively prime. Is the sequence

a, a+m, a+ 2m, . . .

infinitely populated by prime numbers?

This conjecture was initially proposed by Legendre and later proven by

Dirichlet in 1837 using his L-series. This theorem is widely regarded as the

cornerstone of rigorous analytic number theory. In fact, Dirichlet establishes a
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stronger result, demonstrating that the “density” of the subset

{prime p | p ≡ a (mod m)} ⊆ {prime p}

is 1/ϕ(m). In other words, prime numbers are equally distributed among

different residue classes modulo m that are relatively prime to m.

Example 1.10. In 1657, Fermat corresponded with his friend de Bessy, his

Dutch correspondent van Schooten, and English mathematicians Wallis and

Brouncker, inviting them to tackle some intriguing mathematical problems.

The central queries revolved around certain quadratic equations of the form

x2 −Ny2 = 1, x, y ∈ Z>0.

To Wallis and Brouncker, he presented challenges for the cases N = 151 and

N = 313, while to his countryman de Bessy, he requested solutions for the

cases N = 61 and N = 109, “so as not to give him too much trouble”.

More broadly, this problem can be viewed as understanding the values of

integral binary quadratic forms, such as 3x2 + 6xy − 5y2. We will take a brief

journey into the concept of Conway’s topograph, featuring his wells, rivers,

lakes, and weirs, to see how these aid us in addressing the problem.

Example 1.11. The dilogarithm function is defined by the power series

Li2(z) =
∞∑
n=1

zn

n2
for |z| < 1.

Its name and definition are inspired by the analogy with the Taylor series

expansion of the ordinary logarithm around 1

− log(1− z) =
∞∑
n=1

zn

n
for |z| < 1,

which leads to the definition of the polylogarithm

Lim(z) =
∞∑
n=1

zn

nm
for |z| < 1, m = 1, 2, . . . .

The dilogarithm function is one of the simplest non-elementary functions imag-

inable, yet it is also one of the most enigmatic. Its appearances in mathematics,

along with the formulas associated with it, often possess a fantastical quality.

We will explore its connections with hyperbolic 3-manifolds, the quantum

dilogarithm identity, and the wall-crossing formula of stability conditions.



MATHEMATICS FROM EXAMPLES, SPRING 2023 7

Example 1.12. Consider the power series

∞∑
k=0

(−1)kk!xk+1.

It is evident that this series diverges for any x 6= 0, which might initially seem

unremarkable. However, series of this form often arise naturally in various

contexts. For example, they may represent solutions of ordinary differential

equations or provide values for physical quantities such as energy.

Many mathematicians and physicists have recently taken interest in these

series due to their prevalence in cutting-edge research topics, including gauge

theory of singular connections, quantization of symplectic and Poisson mani-

folds, Floer homology and Fukaya categories, knot invariants, wall-crossing and

stability conditions in algebraic geometry, perturbative expansions in quantum

field theory, and more.

We will explore an approach to address the issue of divergence through the

method of Borel summation. Along the way, we will encounter intriguing

phenomena such as resurgence, the Stokes phenomenon, and relate them back

to the wall-crossing formula.
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