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Course Description. Group theory is a fundamental mathematical concept

that elucidates the symmetry of objects, finding applications across various

fields of modern science. This course serves as an introduction to the basic
principles and methods of group theory, utilizing examples and geometric phe-

nomena to foster an intuitive comprehension of employing group methods in

the study of symmetries.

The course commences with an exploration of the symmetries exhibited by

common geometric objects in plane and solid geometry. It then progresses to

introduce the definition and fundamental principles of groups, subsequently

applying these concepts to topics such as symmetry groups of regular poly-

hedra, plane symmetry groups (wallpaper classification), Möbius transforma-

tions, and other related content and methodologies.
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6. Riemann sphere and Möbius transformations 67

6.1. Riemann sphere; affine transformations and inversion 67
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