GEOMETRY AND SYMMETRY, FALL 2022

INSTRUCTOR: YU-WEI FAN

Course Description. Group theory is a fundamental mathematical concept that elucidates the symmetry of objects, finding applications across various fields of modern science. This course serves as an introduction to the basic principles and methods of group theory, utilizing examples and geometric phenomena to foster an intuitive comprehension of employing group methods in the study of symmetries.

The course commences with an exploration of the symmetries exhibited by common geometric objects in plane and solid geometry. It then progresses to introduce the definition and fundamental principles of groups, subsequently applying these concepts to topics such as symmetry groups of regular polyhedra, plane symmetry groups (wallpaper classification), Möbius transformations, and other related content and methodologies.

Contents

1. Overview of the course	3
2. A crash course on basic group theory	6
2.1. Binary operators	6
2.2. Groups	8
2.3. Homomorphisms	10
2.4. Subgroups	12
2.5. Symmetry groups	15
2.6. Group actions	18
3. Platonic solids and finite subgroups of $SO(3, \mathbb{R})$	23
3.1. Classification of the Platonic solids	23
3.2. Symmetry groups of the Platonic solids	24
3.3. Finite subgroups of the rotation group $SO(3, \mathbb{R})$	28
4. A crash course on basic linear algebra	33
4.1. Matrix products, invertibility, determinants	33
4.2. Change of basis, eigenvectors and eigenvalues	37
4.3. Inner products, orthogonal matrices	38

GEOMETRY AND SYMMETRY, FALL 2022

5. Classification of plane crystallographic groups	41
5.1. Translation subgroups and point groups	41
5.2. Classification of frieze groups	45
5.3. Semidirect products	48
5.4. Classification of wallpaper groups	52
6. Riemann sphere and Möbius transformations	67
6.1. Riemann sphere; affine transformations and inversion	67
6.2. Möbius transformations	71
6.3. Hermitian inner product and unitary matrices	75
6.4. Cross ratios	76
6.5. Conjugacy classes of Möbius transformations	78
6.6. Geometric classification of conjugacy classes	79
6.7. Finite subgroups of $M\ddot{o}b(\hat{\mathbb{C}})$	81
6.8. The upper half plane	84
7. Homology groups of topological spaces	88
7.1. Ideas of topological spaces	88
7.2. Ideas of homology groups of topological spaces	90
7.3. Simplicial homology	91
7.4. Singular homology	96
7.5. Brouwer fixed point theorem	100
7.6. Applications of the fixed point theorem	103
7.7. Lefschetz fixed point theorem	105
8. Where to go from here	107

 $\mathbf{2}$